دانلود مقاله ISI انگلیسی شماره 52115
ترجمه فارسی عنوان مقاله

یک الگوریتم هوش محاسباتی برای مسائل بهینه سازی مهندسی هزینه

عنوان انگلیسی
A computational intelligence algorithm for expensive engineering optimization problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52115 2012 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 25, Issue 5, August 2012, Pages 1009–1021

ترجمه کلمات کلیدی
مسائل بهینه سازی هزینه؛ الگوریتم های تکاملی؛ مدل سازی مدل انتخاب؛ تقسیم بندی
کلمات کلیدی انگلیسی
Expensive optimization problems; Evolutionary algorithms; Model-selection modeling; Classification
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم هوش محاسباتی برای مسائل بهینه سازی مهندسی هزینه

چکیده انگلیسی

The modern engineering design optimization process often replaces laboratory experiments with computer simulations, which leads to expensive black-box optimization problems. Such problems often contain candidate solutions which cause the simulation to fail, and therefore they will have no objective value assigned to them, a scenario which degrades the search effectiveness. To address this, this paper proposes a new computational intelligence optimization algorithm which incorporates a classifier into the optimization search. The classifier predicts which solutions are expected to cause a simulation failure, and its prediction is used to bias the search towards solutions for which the simulation is expected to succeed. To further enhance the search effectiveness, the proposed algorithm continuously adapts during the search the type of model and classifier being used. A rigorous performance analysis using a representative application of airfoil shape optimization shows that the proposed algorithm outperformed existing approaches in terms of the final result obtained, and performed a search with a competitively low number of failed evaluations. Analysis also highlights the contribution of incorporating the classifier into the search, and of the model and classifier selection steps.