دانلود مقاله ISI انگلیسی شماره 52139
ترجمه فارسی عنوان مقاله

هوش محاسباتی برای تشخیص بیماری های قلبی: یک رویکرد مشتق شده از دانش پزشکی

عنوان انگلیسی
Computational intelligence for heart disease diagnosis: A medical knowledge driven approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52139 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 1, January 2013, Pages 96–104

ترجمه کلمات کلیدی
داده کلیولند؛ بیماری قلبی؛ هوش محاسباتی؛ تقسیم بندی؛ انتخاب ویژگی
کلمات کلیدی انگلیسی
Cleveland data; Heart disease; Computational intelligence; Classification; Feature selection
پیش نمایش مقاله
پیش نمایش مقاله  هوش محاسباتی برای تشخیص بیماری های قلبی: یک رویکرد مشتق شده از دانش پزشکی

چکیده انگلیسی

This paper investigates a number of computational intelligence techniques in the detection of heart disease. Particularly, comparison of six well known classifiers for the well used Cleveland data is performed. Further, this paper highlights the potential of an expert judgment based (i.e., medical knowledge driven) feature selection process (termed as MFS), and compare against the generally employed computational intelligence based feature selection mechanism. Also, this article recognizes that the publicly available Cleveland data becomes imbalanced when considering binary classification. Performance of classifiers, and also the potential of MFS are investigated considering this imbalanced data issue. The experimental results demonstrate that the use of MFS noticeably improved the performance, especially in terms of accuracy, for most of the classifiers considered and for majority of the datasets (generated by converting the Cleveland dataset for binary classification). MFS combined with the computerized feature selection process (CFS) has also been investigated and showed encouraging results particularly for NaiveBayes, IBK and SMO. In summary, the medical knowledge based feature selection method has shown promise for use in heart disease diagnostics.