دانلود مقاله ISI انگلیسی شماره 52142
ترجمه فارسی عنوان مقاله

یک الگوریتم بهینه سازی ترکیبی جدید از تکنیک های هوش محاسباتی برای پیش بینی حجم مسافران بزرگراه

عنوان انگلیسی
A novel hybrid optimization algorithm of computational intelligence techniques for highway passenger volume prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52142 2011 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 4, April 2011, Pages 4198–4205

ترجمه کلمات کلیدی
پیش بینی حجم مسافران بزرگراه ؛ شبکه عصبی پس انتشار؛ مجموعه ای خشن؛ هوش محاسباتی؛ الگوریتم بهینه سازی ترکیبی؛ الگوریتم بهینه سازی ازدحام ذرات ؛ گسسته سازی
کلمات کلیدی انگلیسی
Highway passenger volume prediction; Back propagation neural network; Rough set; Computational intelligence; Hybrid optimization algorithm; Particle swarm optimization algorithm; Discretization
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم بهینه سازی ترکیبی جدید از تکنیک های هوش محاسباتی برای پیش بینی حجم مسافران بزرگراه

چکیده انگلیسی

A novel hybrid optimization algorithm combining computational intelligence techniques is presented to solve the multifactor highway passenger volume prediction problem. In this paper, we can get and discretize a reduced decision table, which implies that the number of evaluation criteria such as travel quantity, fixed-asset investment, railway mileage, and waterway passenger volume are reduced with no information loss through rough set theory (RST) method. Particle swarm optimization (PSO) algorithm based on the random global optimization is inducted into the network training. The PSO algorithm is used for glancing study in order to confirm the initial values, and then the back propagation neural network (BPNN) is used for given accuracy to found the PSO-BPNN model. And this reduced information is used to form a classification rule set, which is regarded as an appropriate input parameter to training PSO-BPNN model. The RST-PSO-BPNN model is obtained to forecast highway passenger volume. The rules developed by RST analysis show the best prediction accuracy if a case matches any one of the rules. The keystone of this hybrid optimization algorithm is using rules developed by RST for an object that matches any one of the rules and the PSO-BPNN model for one that does not match any of them. The effectiveness of our optimization algorithm was verified by experiments comparing the traditional gray model method. For the experiment, highway passenger volumes of China during the period 1995–2009 were selected, and for the validation, the novel hybrid optimization algorithm is reliable.