دانلود مقاله ISI انگلیسی شماره 52150
ترجمه فارسی عنوان مقاله

روش هوش محاسباتی برای تجزیه و تحلیل قابلیت اطمینان کارآمد از سازه های دفاع از سیل پیچیده

عنوان انگلیسی
Computational intelligence methods for the efficient reliability analysis of complex flood defence structures
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52150 2011 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Structural Safety, Volume 33, Issue 1, January 2011, Pages 64–73

ترجمه کلمات کلیدی
دفاع از سیل ؛ قابلیت اطمینان سازه؛ شبکه های عصبی مصنوعی؛ الگوریتم های ژنتیکی؛ نمونه تطبیقی؛ تابع سطح پاسخ
کلمات کلیدی انگلیسی
Flood defence; Structural reliability; Artificial neural networks; Genetic algorithms; Adaptive sampling; Response surface function
پیش نمایش مقاله
پیش نمایش مقاله  روش هوش محاسباتی برای تجزیه و تحلیل قابلیت اطمینان کارآمد از سازه های دفاع از سیل پیچیده

چکیده انگلیسی

With the continual rise of sea levels and deterioration of flood defence structures over time, it is no longer appropriate to define a design level of flood protection, but rather, it is necessary to estimate the reliability of flood defences under varying and uncertain conditions. For complex geotechnical failure mechanisms, it is often necessary to employ computationally expensive finite element methods to analyse defence and soil behaviours; however, methods available for structural reliability analysis are generally not suitable for direct application to such models where the limit state function is only defined implicitly. In this study, an artificial neural network is used as a response surface function to efficiently emulate the complex finite element model within a Monte Carlo simulation. To ensure the successful and robust implementation of this approach, a genetic algorithm adaptive sampling method is designed and applied to focus sampling of the implicit limit state function towards the limit state region in which the accuracy of the estimated response is of the greatest importance to the estimated structural reliability. The accuracy and gains in computational efficiency obtainable using the proposed method are demonstrated when applied to the 17th Street Canal flood wall which catastrophically failed when Hurricane Katrina hit New Orleans in 2005.