دانلود مقاله ISI انگلیسی شماره 52152
ترجمه فارسی عنوان مقاله

کاربردها ها و مقایسه روش های هوش محاسباتی برای محل بهینه و تنظیم پارامتر UPFC

عنوان انگلیسی
Application and comparison of computational intelligence techniques for optimal location and parameter setting of UPFC
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52152 2010 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 23, Issue 2, March 2010, Pages 203–216

ترجمه کلمات کلیدی
تجزیه و تحلیل احتمالی؛ تکامل تفاضلی ؛ الگوریتم ژنتیک؛ جریان برق؛ بهینه سازی ازدحام ذرات ؛ کنترل جریان برق یکپارچه
کلمات کلیدی انگلیسی
Contingency analysis; Differential evolution (DE); Genetic algorithm (GA); Power flow; Particle swarm optimization (PSO); Unified power flow controller (UPFC)
پیش نمایش مقاله
پیش نمایش مقاله  کاربردها ها و مقایسه روش های هوش محاسباتی برای محل بهینه و تنظیم پارامتر UPFC

چکیده انگلیسی

Unified power flow controller (UPFC) is one of the most effective flexible AC transmission systems (FACTS) devices for enhancing power system security. However, to what extent the performance of UPFC can be brought out, it highly depends upon the location and parameter setting of this device in the system. This paper presents a new approach based on computational intelligence (CI) techniques to find out the optimal placement and parameter setting of UPFC for enhancing power system security under single line contingencies (N−1 contingency). Firstly, a contingency analysis and ranking process to determine the most severe line outage contingencies, considering lines overload and bus voltage limit violations as a performance index, is performed. Secondly, a relatively new evolutionary optimization technique, namely: differential evolution (DE) technique is applied to find out the optimal location and parameter setting of UPFC under the determined contingency scenarios. To verify our proposed approach and for comparison purposes, simulations are performed on an IEEE 14-bus and an IEEE 30-bus power systems. The results, we have obtained, indicate that DE is an easy to use, fast, robust and powerful optimization technique compared with genetic algorithm (GA) and particle swarm optimization (PSO). Installing UPFC in the optimal location determined by DE can significantly enhance the security of power system by eliminating or minimizing the number of overloaded lines and the bus voltage limit violations.