دانلود مقاله ISI انگلیسی شماره 52361
ترجمه فارسی عنوان مقاله

چارچوب بهبود یافته برای بهینه سازی ازدحام ذرات: هوش ازدحامی با پیاده روی تصادفی تنوع هدایت شده

عنوان انگلیسی
Improved framework for particle swarm optimization: Swarm intelligence with diversity-guided random walking
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52361 2011 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 10, 15 September 2011, Pages 12214–12220

ترجمه کلمات کلیدی
بهینه سازی ازدحام ذرات ؛ هوش ازدحامی - پیاده روی تصادفی - تابع هدف دو طرفه
کلمات کلیدی انگلیسی
Particle swarm optimization; Swarm intelligence; Random walking; Bilateral objective function
پیش نمایش مقاله
پیش نمایش مقاله  چارچوب بهبود یافته برای بهینه سازی ازدحام ذرات: هوش ازدحامی با پیاده روی تصادفی تنوع هدایت شده

چکیده انگلیسی

The work and contribution of this study is not only to devise an improved PSO framework that is capable of wider search area and better fitness values, but also to realize a system that possesses the particle swarm intelligence via high diversity preserving and individual random walking. The purpose of this study is to interpret the processes of how to approach this framework, which consists of bilateral objective function (BOF) and random walking swarm intelligence (RW-PSO), and to provide the distinction from the current problems of PSO technique. Hence, this paper will present the ability of particles escaping from local optimum can be greatly improved because of the increase of exploration stage and scope and the global optimum can be obtained easily with the hybrid of BOF and RWSI, which may involve in searching for the solution from a more complicated test function. Subsequently, the results revealed the advantages of the proposed framework for improving the particle swarm optimization: (a) preserving the simple spirit of the conventional PSO; (b) achieving effective solutions for benchmark functions efficiently; (c) increasing no additional parameters to gain fitness improvement. Moreover, the superiority of the proposed framework has also been demonstrated the results via seven test functions defined to simulate some of complicated real-world problems and the better performance according to the experimental results with several benchmark functions.