دانلود مقاله ISI انگلیسی شماره 52678
ترجمه فارسی عنوان مقاله

یک شبکه عصبی چند جمله ای فشرده برای طبقه بندی با استفاده از هوش ازدحامی

عنوان انگلیسی
A condensed polynomial neural network for classification using swarm intelligence
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
52678 2011 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 11, Issue 3, April 2011, Pages 3106–3113

ترجمه کلمات کلیدی
شبکه های عصبی چند جمله ای - تقسیم بندی؛ بهینه سازی ازدحام ذرات ؛ توصیف جزئی؛ داده کاوی
کلمات کلیدی انگلیسی
Polynomial neural network; Classification; Particle swarm optimization; Partial descriptor; Data mining
پیش نمایش مقاله
پیش نمایش مقاله  یک شبکه عصبی چند جمله ای فشرده برای طبقه بندی با استفاده از هوش ازدحامی

چکیده انگلیسی

A novel condensed polynomial neural network using particle swarm optimization (PSO) technique is proposed for the task of classification in this paper. In solving classification task classical algorithms such as polynomial neural network (PNN) and its variants need more computational time as the partial descriptions (PDs) grow over the training period layer-by-layer and make the network very complex. Unlike PNN the proposed network needs to generate the partial description for a single layer. The discrete PSO (DPSO) is used to select a relevant set of PDs as well as features with a hope to get better accuracy, which are in turn fed to the output neuron. The weights associated with the links from hidden to output neuron is optimized by PSO for continuous domain (CPSO). Performance of this model is compared with the results obtained from PNN. Simulation result shows that the performance of this model both in processing time and accuracy, is encouraging for harnessing its power in domain with large and complex data particularly in data mining area.