دانلود مقاله ISI انگلیسی شماره 54001
ترجمه فارسی عنوان مقاله

ماشین بردار پشتیبانی موجک برای تشخیص خطای ماشین القایی بر اساس سیگنال جریان گذرا

عنوان انگلیسی
Wavelet support vector machine for induction machine fault diagnosis based on transient current signal
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54001 2008 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 35, Issues 1–2, July–August 2008, Pages 307–316

ترجمه کلمات کلیدی
ماشین بردار پشتیبانی موجک ؛ تشخیص خطا؛ سیگنال جریان گذرا؛ تجزیه و تحلیل مولفه؛ موتور القایی
کلمات کلیدی انگلیسی
Wavelet support vector machines; Fault diagnosis; Transient current signal; Component analysis; Induction motor
پیش نمایش مقاله
پیش نمایش مقاله  ماشین بردار پشتیبانی موجک برای تشخیص خطای ماشین القایی بر اساس سیگنال جریان گذرا

چکیده انگلیسی

This paper presents establishing intelligent system for faults detection and classification of induction motor using wavelet support vector machine (W-SVM). Support vector machines (SVM) is well known as intelligent classifier with strong generalization ability. Application of nonlinear SVM using kernel function is widely used for multi-class classification procedure. In this paper, building kernel function using wavelet will be introduced and applied for SVM multi-class classifier. Moreover, the feature vectors for training classification routine are obtained from transient current signal that preprocessed by discrete wavelet transform. In this work, principal component analysis (PCA) and kernel PCA are performed to reduce the dimension of features and to extract the useful features for classification process. Hence, a relatively new intelligent faults detection and classification method called W-SVM is established. This method is used to induction motor for faults classification based on transient current signal. The results show that the performance of classification has high accuracy based on experimental work.