دانلود مقاله ISI انگلیسی شماره 54089
ترجمه فارسی عنوان مقاله

تشخیص خطای چند منظوره موتور القایی با استفاده از هیلبرت و تبدیل موجک

عنوان انگلیسی
Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
54089 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 30, May 2015, Pages 341–352

ترجمه کلمات کلیدی
موتور القایی؛ نظارت بر لرزش - تبدیل هیلبرت؛ تبدیل موجک پیوسته؛ الگوریتم ژنتیک
کلمات کلیدی انگلیسی
Induction motor; Vibration monitoring; Hilbert Transform; Continuous Wavelet Transform; Genetic Algorithm
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص خطای چند منظوره موتور القایی با استفاده از هیلبرت و تبدیل موجک

چکیده انگلیسی

The information extraction capability of two widely used signal processing tools, Hilbert Transform (HT) and Wavelet Transform (WT), is investigated to develop a multi-class fault diagnosis scheme for induction motor using radial vibration signals. The vibration signals are associated with unique predominant frequency components and instantaneous amplitudes depending on the motor condition. Using good systematic and analytical approach this fault frequencies can be identified. However, some faults either electrical or mechanical in nature are associated with same or similar vibration frequencies leading to erroneous conclusions. Genetic Algorithm (GA) is proposed and used successfully to find the most relevant fault frequencies in radial (vertical) frame vibration signal which can be used to diagnose the induction motor faults very effectively even in the presence of noise. The information obtained by Continuous Wavelet Transform (CWT) was found to be highly redundant compared to HT and thus by selecting the most relevant features using GA, the fault classification accuracy has considerably improved especially for CWT. Almost similar fault frequencies were found using CWT + GA and HT + GA for radial vibration signal.