دانلود مقاله ISI انگلیسی شماره 55783
ترجمه فارسی عنوان مقاله

پهنای باند نیمه پهنای باند نانومواد ضدعفونی کننده نیمه شفاف فراطبیعی در بستر شیشه ای برای کاربردهای برداشت انرژی خورشیدی

عنوان انگلیسی
Broadband quasi-omnidirectional sub-wavelength nanoporous antireflecting surfaces on glass substrate for solar energy harvesting applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55783 2016 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Solar Energy Materials and Solar Cells, Volume 145, Part 3, February 2016, Pages 432–439

ترجمه کلمات کلیدی
برداشت انرژی خورشیدی، سطح نانوپور، تقریبا همه جانبه، زیر طول موج، پراکندگی
کلمات کلیدی انگلیسی
Solar energy harvesting; Nanoporous surface; Quasi-omnidirectional; Sub-wavelength; Scattering

چکیده انگلیسی

A cost effective, facile and scalable method to fabricate the stable broadband antireflective (AR) surface on glass substrates for solar energy applications is still a challenge. In this paper, we have demonstrated a simple and non-lithographic method to fabricate the broadband quasi-omnidirectional AR nanoporous surface on glass substrates by hydrofluoric (HF) acid based vapor phase etching method. Both-sides etched sodalime glass substrate under optimized conditions showed broadband enhanced transmittance with maximum total transmittance of ~97% at 598 nm. The measured transmittance exceeds by ~5.4% as compared to plain glass (91.6%). Field emission scanning electron microscopy results showed that an AR nanoporous surface with graded porosity was formed on sodalime glass substrate after etching. Due to the graded porosity, the fabricated nanoporous surface on sodalime glass substrate showed excellent broadband enhanced transmittance, and exhibited low reflectance <2.8% over a wide range of incidence angles (8–48°). The mechanism of nanostructured surface formation and the effect of etching parameters on transmittance have been discussed in detail. To get more insight, the theoretical transmittance of the optimized sample has been determined by finite difference time domain simulation, which confirms a good agreement of AR property with the experimental results. Furthermore, these AR nanoporous surface showed good adhesion property, excellent thermal and chemical stability, and exhibited outstanding stability against outdoor exposure. These properties signify its strong potential in various solar energy devices.