دانلود مقاله ISI انگلیسی شماره 55826
ترجمه فارسی عنوان مقاله

استفاده از داده های اندازه گیری هوشمند برای تخمین احتمالی پاسخ به تقاضا، با قابلیت کاربرد ادغام انرژی خورشیدی

عنوان انگلیسی
Using smart meter data to estimate demand response potential, with application to solar energy integration
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55826 2014 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Policy, Volume 73, October 2014, Pages 607–619

ترجمه کلمات کلیدی
پاسخگویی به تقاضا - داده اندازه گیری هوشمند؛ ادغام تجدید پذیر
کلمات کلیدی انگلیسی
Demand response; Smart meter data; Renewable integration
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از داده های اندازه گیری هوشمند برای تخمین احتمالی پاسخ به تقاضا، با قابلیت کاربرد ادغام انرژی خورشیدی

چکیده انگلیسی

This paper presents a new method for estimating the demand response potential of residential air conditioning (A/C), using hourly electricity consumption data (“smart meter” data) from 30,000 customer accounts in Northern California. We apply linear regression and unsupervised classification methods to hourly, whole-home consumption and outdoor air temperature data to determine the hours, if any, that each home׳s A/C is active, and the temperature dependence of consumption when it is active. When results from our sample are scaled up to the total population, we find a maximum of 270–360 MW (95% c.i.) of demand response potential over a 1-h duration with a 4 °F setpoint change, and up to 3.2–3.8 GW of short-term curtailment potential. The estimated resource correlates well with the evening decline of solar production on hot, summer afternoons, suggesting that demand response could potentially act as reserves for the grid during these periods in the near future with expected higher adoption rates of solar energy. Additionally, the top 5% of homes in the sample represent 40% of the total MW-hours of DR resource, suggesting that policies and programs to take advantage of this resource should target these high users to maximize cost-effectiveness.