دانلود مقاله ISI انگلیسی شماره 56198
ترجمه فارسی عنوان مقاله

مدلسازی و توانایی کنترل ژنراتور القایی دو سو تغذیه تحت شرایط ولتاژ شبکه نامتعادل

عنوان انگلیسی
Modeling and enhanced control of DFIG under unbalanced grid voltage conditions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
56198 2009 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Electric Power Systems Research, Volume 79, Issue 2, February 2009, Pages 273–281

ترجمه کلمات کلیدی
عدم تعادل ولتاژ؛ توربین های بادی؛ ژنراتور القایی دوسو تغذیه (DFIG)؛ توان اکتیو و راکتیو لحظه ای؛کنترلر انتگرال متناسب به علاوه رزونانس (PI + R)
کلمات کلیدی انگلیسی
Voltage unbalance; Wind turbines; Doubly fed induction generator (DFIG); Instantaneous active and reactive powers; Proportional integral plus resonant (PI + R) controller
پیش نمایش مقاله
پیش نمایش مقاله  مدلسازی و توانایی کنترل ژنراتور القایی دو سو تغذیه تحت شرایط ولتاژ شبکه نامتعادل

چکیده انگلیسی

This paper presents a mathematical model of a doubly fed induction generator (DFIG) based on stator voltage orientation (SVO) in the positive and negative synchronous reference frames under unbalanced grid voltage conditions. The oscillations of the DFIG electromagnetic torque and the stator active and reactive powers are fully described during grid voltage unbalance. A new rotor current controller implemented in the positive synchronous reference frame is proposed. The controller consists of a proportional integral (PI) regulator and a harmonic resonant (R) compensator tuned at twice the grid frequency. Thus, the positive and negative sequence components of DFIG rotor currents are directly regulated by the PI + R controller without the need of involving positive and negative sequence decomposition, which indeed improves the dynamic performance of DFIG-based wind power generation system during small steady-state and relatively larger transient network unbalances. The theoretical analysis and the feasibility of the proposed unbalanced control scheme are validated by simulation studies on a 1.5-MW wind-turbine driven DFIG system. Compared with conventional single PI current control design, the proposed control scheme results in significant elimination of either DFIG power or torque oscillation under unbalanced grid voltage conditions.