دانلود مقاله ISI انگلیسی شماره 63000
ترجمه فارسی عنوان مقاله

اکتشاف چند پایگاه داده از فضاهای بزرگ طراحی در چارچوب بهینه سازی ساختاری تکاملی آبشار

عنوان انگلیسی
Multi-database exploration of large design spaces in the framework of cascade evolutionary structural sizing optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
63000 2005 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 30–33, 12 August 2005, Pages 3315–3330

ترجمه کلمات کلیدی
بهینه سازی اندازه، الگوریتمهای تکاملی، آبشار بانک اطلاعاتی، فضای طراحی
کلمات کلیدی انگلیسی
Sizing optimization; Evolutionary algorithms; Cascade; Database; Design space

چکیده انگلیسی

In discrete sizing optimization of truss and frame structures the design variables take values from databases, which are usually populated with a relatively small number of cross-section types and sizes. The aim of this work is to allow the use of large-size databases in discrete structural sizing optimization problems, in order to enrich the set of design variable options and increase the potential of achieving high-quality optimal designs. For this purpose, the concept of coarse database is introduced, according to which smaller-size versions of an appropriately ordered large database can be constructed. This concept is combined with the idea of cascading, which allows a single optimization problem to be tackled with a number of autonomous optimization stages. Under this context, several coarse versions of the same full-size database are formed, in order to utilize a different database in each cascade stage executed with an evolutionary optimization algorithm. The first optimization stages of the resulting multi-database cascade procedure make use of the coarsest database versions available and serve the purpose of basic design space exploration. The last stages exploit finer databases (including the original full-size database) and aim in fine tuning the achieved optimal solution. Based on the reported numerical results, multi-database cascading proves to be an effective tool for the handling of large databases and corresponding extensive design spaces in the framework of discrete structural sizing optimization applications.