دانلود مقاله ISI انگلیسی شماره 63044
ترجمه فارسی عنوان مقاله

مدل تقریبی وفاداری بالا برای بررسی فضای طراحی مولد ترموالکتریک چند پارامتر

عنوان انگلیسی
High fidelity finite difference model for exploring multi-parameter thermoelectric generator design space
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
63044 2014 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 129, 15 September 2014, Pages 373–383

ترجمه کلمات کلیدی
ژنراتورهای ترموالکتریک، بازیابی گرما زباله، بهینه سازی طراحی، تبدیل انرژی، سیلیسیم منیزیم، سیلیسید منگنز
کلمات کلیدی انگلیسی
Thermoelectric generators; Waste heat recovery; Design optimization; Energy conversion; Magnesium silicide; Manganese silicide

چکیده انگلیسی

Thermoelectric generators (TEGs) are being studied and developed for applications in which waste heat, for example, from the exhaust of motor vehicles is converted into usable electricity. TEGs consisting of TE elements integrated with an exhaust heat exchanger require optimization to produce the maximum possible power output. Important optimization parameters include TE element leg length, fill fraction, leg area ratio between n- and p-type legs, and load resistance. A finite difference model was developed to study the interdependencies among these optimization parameters for thermoelectric elements integrated with an exhaust gas heat exchanger. The present study was carried out for TE devices made from n-type Mg2Si and p-type MnSi1.8 based silicides, which are promising TE materials for use at high temperatures associated with some exhaust heat recovery systems. The model uses specified convection boundary conditions instead of specified temperature boundary conditions to duplicate realistic operating conditions for a waste heat recovery system installed in the exhaust of a vehicle. The 1st generation, and an improved 2nd generation TEG module using Mg2Si and p-type MnSi1.8 based silicides were fabricated and tested to compare TE power generation with the numerical model. Important results include parameter values for maximum power output per unit area and the interdependencies among those parameters. Heat transfer through the void areas was neglected in the numerical model. When thermal contact resistance between the TE element and the heat exchangers is considered negligible, the numerical model predicts that any volume of TE material can produce the same power per unit area, given the parameters are accurately optimized. Incorporating the thermal contact resistance, the numerical model predicts that the peak power output is greater for longer TE elements with larger leg areas. The optimization results present strategies to improve the performance of TEG modules used for waste heat recovery systems.