دانلود مقاله ISI انگلیسی شماره 68892
ترجمه فارسی عنوان مقاله

اندازه گیری مدل ساختمان با استفاده از انرژی و داده های زیست محیطی

عنوان انگلیسی
Building model calibration using energy and environmental data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
68892 2015 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy and Buildings, Volume 94, 1 May 2015, Pages 109–120

ترجمه کلمات کلیدی
کالیبراسیون مدل؛ اندازه گیری داده های انرژی؛ اطلاعات آب و هوایی محلی؛ شبیه سازی عملکرد ساختمان - مدل سازی اطلاعات ساختمان؛
کلمات کلیدی انگلیسی
Model calibration; Measured energy data; Local weather data; Building performance simulation; Energy Plus; Hourly data; Sensor deployment; Case study buildingAHU, air handling units; BES, building energy simulation; BIM, building information modelling; BWM, Box whisker mean; CV(RMSE), cumulative variation of root mean square error; ECM, energy conservation measures; EPW, EnergyPlus weather (file); HAM, heat, air and moisture (Modelling); HVAC, heating, ventilation, air-conditioning and cooling; MBE, mean bias error; PIR, passive infra-red
پیش نمایش مقاله
پیش نمایش مقاله  اندازه گیری مدل ساختمان با استفاده از انرژی و داده های زیست محیطی

چکیده انگلیسی

A large number of randomly interacting variables combine to dictate the energy performance of a building. Building energy simulation models attempt to capture these perturbations as accurately as possible. The prediction accuracy of building energy models can now be better examined given the widespread availability of environmental and energy monitoring equipment and reduced data storage costs. In this paper a set of two calibrated environmental sensors together with a weather station are deployed in a 5-storey office building to examine the accuracy of an EnergyPlus virtual building model. Using American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Guide 14 indices the model was calibrated to achieve Mean Bias Error (MBE) values within ±5% and Cumulative Variation of Root Mean Square Error (CV(RMSE)) values below 10%. The calibrated EnergyPlus model was able to predict annual hourly space air temperatures with an accuracy of ±1.5 °C for 99.5% and an accuracy of ±1 °C for 93.2% of the time.