دانلود مقاله ISI انگلیسی شماره 117373
ترجمه فارسی عنوان مقاله

استفاده از شبکه های دولتی اکو برای طبقه بندی: مطالعه موردی در تشخیص بیماری پارکینسون

عنوان انگلیسی
Using echo state networks for classification: A case study in Parkinson's disease diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
117373 2018 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Artificial Intelligence in Medicine, Volume 86, March 2018, Pages 53-59

ترجمه کلمات کلیدی
بیماری پارکینسون، شبکه های دولتی اکو بیماری نوروژنیک،
کلمات کلیدی انگلیسی
Parkinson's disease; Echo state networks; Neurodegenerative disease;
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از شبکه های دولتی اکو برای طبقه بندی: مطالعه موردی در تشخیص بیماری پارکینسون

چکیده انگلیسی

Despite having notable advantages over established machine learning methods for time series analysis, reservoir computing methods, such as echo state networks (ESNs), have yet to be widely used for practical data mining applications. In this paper, we address this deficit with a case study that demonstrates how ESNs can be trained to predict disease labels when stimulated with movement data. Since there has been relatively little prior research into using ESNs for classification, we also consider a number of different approaches for realising input–output mappings. Our results show that ESNs can carry out effective classification and are competitive with existing approaches that have significantly longer training times, in addition to performing similarly with models employing conventional feature extraction strategies that require expert domain knowledge. This suggests that ESNs may prove beneficial in situations where predictive models must be trained rapidly and without the benefit of domain knowledge, for example on high-dimensional data produced by wearable medical technologies. This application area is emphasized with a case study of Parkinson's disease patients who have been recorded by wearable sensors while performing basic movement tasks.