دانلود مقاله ISI انگلیسی شماره 118563
ترجمه فارسی عنوان مقاله

ساختار سلسله مراتبی و طبقه بندی متن بر اساس استراتژی آرام سازی و کمترین مدل اطلاعات

عنوان انگلیسی
Hierarchy construction and text classification based on the relaxation strategy and least information model
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
118563 2018 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 100, 15 June 2018, Pages 157-164

ترجمه کلمات کلیدی
طبقه بندی سلسله مراتبی، استراتژی آرامش بخش، نظریه کمترین اطلاعات، وزن ترمیمی،
کلمات کلیدی انگلیسی
Hierarchy classification; Relaxation strategy; Least Information Theory; Term weighting;
پیش نمایش مقاله
پیش نمایش مقاله  ساختار سلسله مراتبی و طبقه بندی متن بر اساس استراتژی آرام سازی و کمترین مدل اطلاعات

چکیده انگلیسی

Hierarchical classification is an effective approach to categorization of large-scale text data. We introduce a relaxed strategy into the traditional hierarchical classification method to improve the system performance. During the process of hierarchy structure construction, our method delays node judgment of the uncertain category until it can be classified clearly. This approach effectively alleviates the ‘block’ problem which transfers the classification error from the higher level to the lower level in the hierarchy structure. A new term weighting approach based on the Least Information Theory (LIT) is adopted for the hierarchy classification. It quantifies information in probability distribution changes and offers a new document representation model where the contribution of each term can be properly weighted. The experimental results show that the relaxation approach builds a more reasonable hierarchy and further improves classification performance. It also outperforms other classification methods such as SVM (Support Vector Machine) in terms of efficiency and the approach is more efficient for large-scale text classification tasks. Compared to the classic term weighting method TF*IDF, LIT-based methods achieves significant improvement on the classification performance.