دانلود مقاله ISI انگلیسی شماره 127869
ترجمه فارسی عنوان مقاله

تشخیص استرس مربوط به کار با دستگاه پوشیدنی

عنوان انگلیسی
Detecting work-related stress with a wearable device
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
127869 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers in Industry, Volume 90, September 2017, Pages 42-49

ترجمه کلمات کلیدی
تشخیص استرس، محاسبات پوشیدنی، الکتروکاردیوگرام، تنفس، ماشین بردار پشتیبانی،
کلمات کلیدی انگلیسی
Stress detection; Wearable computing; Electrocardiogram; Respiration; Support vector machine;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص استرس مربوط به کار با دستگاه پوشیدنی

چکیده انگلیسی

Excessive stress will lower work efficiency, lead to negative emotions and even various illnesses. This paper aims at detecting work-related stress based on physiological signals measured by a wearable device. Different from common binary stress detection, this study detects three levels of stress, i.e., no stress, moderate stress and high perceived stress. The Montreal Imaging Stress Task (MIST) is used to simulate the different stress conditions, including both mental stress and psychosocial stress factors that are relevant at the workplace. A sensor-based wearable device is used to acquire the electrocardiogram (ECG) and respiration (RSP) signals from 39 participants. We extract stress-related features from ECG and RSP, and the Random Forest is used to select the optimal feature combination, which is later fed to the classifier. Four classifiers are investigated about their ability to predict the three stress levels. Finally, the combination of Random Forest and Support Vector Machine (SVM) achieve the best performance. With this method, the accuracy is improved from 78% to 84% in three states classification. And in binary stress detection, the accuracy is 94%.