دانلود مقاله ISI انگلیسی شماره 129101
ترجمه فارسی عنوان مقاله

معادله انتقال حرارت پایدار دوگانه فاز با استفاده از تحلیلی انتگرال محدود

عنوان انگلیسی
Finite integral transform-based analytical solutions of dual phase lag bio-heat transfer equation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
129101 2017 46 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 52, December 2017, Pages 378-403

ترجمه کلمات کلیدی
مدل دوام فاز فاز تکنیک تبدیل انتگرال محدود راه حل تحلیلی، انتقال حرارت بیولوژیکی،
کلمات کلیدی انگلیسی
Dual phase lag model; Finite integral transform technique; Analytical solution; Bio-heat transfer;
پیش نمایش مقاله
پیش نمایش مقاله  معادله انتقال حرارت پایدار دوگانه فاز با استفاده از تحلیلی انتگرال محدود

چکیده انگلیسی

A finite integral transform (FIT)-based analytical solution to the dual phase lag (DPL) bio-heat transfer equation has been developed. One of the potential applications of this analytical approach is in the field of photo-thermal therapy, wherein the interest lies in determining the thermal response of laser-irradiated biological samples. In order to demonstrate the applicability of the generalized analytical solutions, three problems have been formulated: (1) time independent boundary conditions (constant surface temperature heating), (2) time dependent boundary conditions (medium subjected to sinusoidal surface heating), and (3) biological tissue phantoms subjected to short-pulse laser irradiation. In the context of the case study involving biological tissue phantoms, the FIT-based analytical solutions of Fourier, as well as non-Fourier, heat conduction equations have been coupled with a numerical solution of the transient form of the radiative transfer equation (RTE) to determine the resultant temperature distribution. Performance of the FIT-based approach has been assessed by comparing the results of the present study with those reported in the literature. A comparison of DPL-based analytical solutions with those obtained using the conventional Fourier and hyperbolic heat conduction models has been presented. The relative influence of relaxation times associated with the temperature gradients (τT) and heat flux (τq) on the resultant thermal profiles has also been discussed. To the best of the knowledge of the authors, the present study is the first successful attempt at developing complete FIT-based analytical solution(s) of non-Fourier heat conduction equation(s), which have subsequently been coupled with numerical solutions of the transient form of the RTE. The work finds its importance in a range of areas such as material processing, photo-thermal therapy, etc.