دانلود مقاله ISI انگلیسی شماره 129174
ترجمه فارسی عنوان مقاله

نتیجه گیری در داده های پانل با اثرات تعاملی با استفاده از ماتریس های کوواریانس بزرگ

عنوان انگلیسی
Inferences in panel data with interactive effects using large covariance matrices
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
129174 2017 54 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Econometrics, Volume 200, Issue 1, September 2017, Pages 59-78

پیش نمایش مقاله
پیش نمایش مقاله  نتیجه گیری در داده های پانل با اثرات تعاملی با استفاده از ماتریس های کوواریانس بزرگ

چکیده انگلیسی

We consider efficient estimation of panel data models with interactive effects, which relies on a high-dimensional inverse covariance matrix estimator. By using a consistent estimator of the error covariance matrix, we can take into account both cross-sectional correlations and heteroskedasticity. In the presence of cross-sectional correlations, the proposed estimator eliminates the cross-sectional correlation bias, and is more efficient than the existing methods. The rate of convergence is also improved. In addition, we find that when the statistical inference involves estimating a high-dimensional inverse covariance matrix, the minimax convergence rate on large covariance estimations is not sufficient for inferences. To address this issue, a new “doubly weighted convergence” result is developed. The proposed method is applied to the US divorce rate data. We find that our more efficient estimator identifies the significant effects of divorce-law reforms on the divorce rate, and provides tighter confidence intervals than existing methods. This provides a confirmation for the empirical findings of Wolfers (2006) under more general unobserved heterogeneity.