دانلود مقاله ISI انگلیسی شماره 140839
ترجمه فارسی عنوان مقاله

ارزیابی نیاز به ذخیره انرژی برای افزایش خودمختاری محله ها

عنوان انگلیسی
Evaluating the need for energy storage to enhance autonomy of neighborhoods
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
140839 2017 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Procedia, Volume 122, September 2017, Pages 253-258

ترجمه کلمات کلیدی
ذخیره سازی باتری، قیمت برق، انرژی خورشیدی، قدرت فتوولتائیک خورشیدی، مدل تکنولوژیکی اقتصادی ذخیره انرژی حرارتی،
کلمات کلیدی انگلیسی
Battery Storage; Electricity Price; Solar Energy; Solar Photovoltaic Power; Techno-Economic Model; Thermal energy storage;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی نیاز به ذخیره انرژی برای افزایش خودمختاری محله ها

چکیده انگلیسی

Energy storage is generally considered as a means to bridge a period between when/where energy is available and when/where it is in demand. Storage plays an important role by providing flexibility to energy systems, increasing the potential to accommodate variable renewables generation and improving management of electricity networks. However, currently it remains unclear when and under which conditions energy storage can be profitably operated at a district level. The present study aims to quantify the level of integration of solar energy and storage in the Junction district of Geneva. A simulation tool is developed to investigate the techno-economical and environmental assessment under different scenarios. For a given investment over 20 years, the model calculates the levelized cost of electricity (LCOE), the autonomy level as well as the CO2 emissions. Given the assumptions of the model, four scenarios are analysed based on the combination of solar PV, storage, solar thermal and heat pump to find out an economically optimal configuration in terms of system size. A comparison with the Homer software is performed to test the robustness of the solar PV and battery model. The economic profitability of solar PV and battery system is in very good agreement with Homer and the autonomy level is validated by using a simulation tool created by SI-REN (Services Industriels des Energies Renouvelables de Lausanne). However, combining solar PV with battery system doesn’t bring additional autonomy to the model for Geneva study case. Under the assumptions of the model, to foster investments in solar PV and battery installations, falling investments costs seem necessary for the future. A reduction gap between buying and selling price in grid for solar panel is recommended to increase solar installations. A validated simulation tool has been developed in this work and provide a reliable based that will be extended in the future to include the thermal demand and production. The availability of thermal storage at a large scale as well as the production over a district should further increase the autonomy of the district.