دانلود مقاله ISI انگلیسی شماره 142932
ترجمه فارسی عنوان مقاله

ارزش ذخیره سازی هیدروژنی پمپ در یک سیستم تولید و تخصیص انرژی هیبریدی

عنوان انگلیسی
Value of pumped hydro storage in a hybrid energy generation and allocation system
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142932 2017 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Energy, Volume 205, 1 November 2017, Pages 1202-1215

ترجمه کلمات کلیدی
ذخیره انرژی پمپ شده، انرژی خورشیدی، برنامه اتفاقی دو مرحله ای، هند،
کلمات کلیدی انگلیسی
Pumped hydro energy storage; Solar energy; Two-stage stochastic program; India;
پیش نمایش مقاله
پیش نمایش مقاله  ارزش ذخیره سازی هیدروژنی پمپ در یک سیستم تولید و تخصیص انرژی هیبریدی

چکیده انگلیسی

Transition from fossil fuels to renewable sources is inevitable. In this direction, variation and intermittency of renewables can be integrated into the grid by means of hybrid systems that operate as a combination of alternative resources, energy storage and long distance transmission lines. In this study, we propose a two-stage stochastic mixed-integer programming model for sizing an integrated hybrid energy system, in which intermittent solar generation in demand points is supported by pumped hydro storage (PHES) systems and diesel is used as an expensive back-up source. PHES systems work as a combination of pumped storage and conventional hydropower stations since there is also natural streamflow coming to the upper reservoirs that shows significant seasonal and inter-annual variability and uncertainty. With several case studies from India, we examine the role of high hydropower potential in the Himalaya Mountains to support solar energy generation in the form of pumped hydro or conventional hydro system while meeting the demand at various scales. We show that pumped hydro storage can keep the diesel contribution to meet the demand less than 10%, whereas this number can go up to more than 50% for conventional systems where the streamflow potential is limited compared to the demand. We also examine the role of pumped hydro systems in both isolated and connected systems (through inter-regional transmission lines) and show that the benefit of pumped hydro is more significant in isolated systems and resource-sharing in connected systems can substitute for energy storage. In addition, with the help of the proposed model, we show that the upper reservoir size of a pumped hydro system could be lower than the reservoir size of a conventional hydropower system depending on the demand scale and streamflow availability. This means that, most of the current conventional hydropower stations could be converted to pumped hydropower stations without needing to modify the upper reservoir, leading to a significantly reduced diesel contribution and lower system unit cost.