دانلود مقاله ISI انگلیسی شماره 143391
ترجمه فارسی عنوان مقاله

جریان قدرت مطلوب با توجه به درجه حرارت خط هدایت تحت نفوذ بالا از منابع انرژی تجدید پذیر متناوب

عنوان انگلیسی
Optimal power flow considering line-conductor temperature limits under high penetration of intermittent renewable energy sources
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
143391 2018 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 101, October 2018, Pages 255-267

ترجمه کلمات کلیدی
محاسبه دمای هدایت کننده، رتبه بندی پویا، منابع انرژی تجدیدپذیر متناوب، جریان قدرت مطلوب،
کلمات کلیدی انگلیسی
Conductor-temperature calculation; Dynamic line rating; Intermittent renewable energy sources; Optimal power flow;
پیش نمایش مقاله
پیش نمایش مقاله  جریان قدرت مطلوب با توجه به درجه حرارت خط هدایت تحت نفوذ بالا از منابع انرژی تجدید پذیر متناوب

چکیده انگلیسی

Forecasts of the power generated by intermittent renewable energy (IRE) sources are typically characterized by high uncertainty levels. Hence, recent formulations of the optimal power flow (OPF) problem incorporate the costs associated with the increased risk of generation shortage due to IRE uncertainty. Additionally, IRE generation increases the power flow uncertainty, thereby increasing the possibility of violating the thermal limits of overhead conductors. Real-time monitoring of the thermal statuses of overhead lines has been considered effective in increasing the transmission-system usage; in addition, it can influence IRE scheduling and the associated uncertainty costs. This paper proposes the formulation of an OPF problem incorporating the thermal characteristics of the conductor, calculated from the monitored weather parameters, for a system with significant IRE-source generation. The resulting convex nonlinear optimization problem is solved using a primal-dual interior point solver. A simplified form of the overhead-conductor heat balance equation that expresses the conductor temperature as an explicit function of the current is proposed, simplifying the incorporation of the conductor thermal characteristics in the problem formulation. The application of the proposed formulation is demonstrated using a modified version of the IEEE 30-bus test system with IRE generation.