دانلود مقاله ISI انگلیسی شماره 146868
ترجمه فارسی عنوان مقاله

معیارهای انتقال رژیم جریان برای جریان دو فاز پایین جریان مشترک

عنوان انگلیسی
Flow regime transition criteria for co-current downward two-phase flow
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146868 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Progress in Nuclear Energy, Volume 103, March 2018, Pages 165-175

ترجمه کلمات کلیدی
نقشه رژیم جریان معیارهای انتقال، جریان پایین، مدل رانش شتاب، بی ثباتی جریان،
کلمات کلیدی انگلیسی
Flow regime map; Transition criteria; Downward flow; Drift-flux model; Flow instability;
پیش نمایش مقاله
پیش نمایش مقاله  معیارهای انتقال رژیم جریان برای جریان دو فاز پایین جریان مشترک

چکیده انگلیسی

Downward two-phase flow is observed in light water reactor accident scenarios such as loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) due to loss of feed water or a secondary pipe break, and so, it is vital to have a thorough understanding of the flow mechanisms and regimes. With this point of view, flow regime transition criteria for vertical downward flow for a range of pipe diameters of 24–101.6 mm has been developed. Several models looked at the radial distribution of the bubbles and the wake effect of leading bubbles while others looked into the Kelvin-Helmholtz instability seen at the gas-liquid interface. The newly developed criteria have been compared to flow regime maps obtained via subjective and objective means, consisting of air-water data at atmospheric conditions as well as at an elevated pressure of 0.2 MPa. The new model is also compared to flow regime maps developed with different inlet conditions. Overall, the present model showed good agreements with the available data, with the exception of several 50.8 mm ID flow regime maps of different inlet conditions as well as a self-organizing neural network. This study also highlights the need for a more objective and consistent flow regime map data for large diameter pipes, the identification of cap-bubbly and churn-turbulent flows in these maps, and the deviations observed between a supervised and self-organizing neural network (SONN).