دانلود مقاله ISI انگلیسی شماره 148605
ترجمه فارسی عنوان مقاله

کنترل لرزش چندین موشک پرتاب موشک غیرمستقیم با استفاده از شبکه عصبی با عملکرد شعاعی

عنوان انگلیسی
Vibration control of uncertain multiple launch rocket system using radial basis function neural network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
148605 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 98, 1 January 2018, Pages 702-721

ترجمه کلمات کلیدی
کنترل لرزش، شبکه عصبی، سیستم مکانیکی مکانیکی، برآوردگر عدم اطمینان، سیستم موشک چند موشک، کنترل گشتاور محاسبه شده،
کلمات کلیدی انگلیسی
Vibration control; Neural network; Motor-mechanism coupling system; Uncertainty estimator; Multiple launch rocket system; Computed torque control;
پیش نمایش مقاله
پیش نمایش مقاله  کنترل لرزش چندین موشک پرتاب موشک غیرمستقیم با استفاده از شبکه عصبی با عملکرد شعاعی

چکیده انگلیسی

Poor dispersion characteristics of rockets due to the vibration of Multiple Launch Rocket System (MLRS) have always restricted the MLRS development for several decades. Vibration control is a key technique to improve the dispersion characteristics of rockets. For a mechanical system such as MLRS, the major difficulty in designing an appropriate control strategy that can achieve the desired vibration control performance is to guarantee the robustness and stability of the control system under the occurrence of uncertainties and nonlinearities. To approach this problem, a computed torque controller integrated with a radial basis function neural network is proposed to achieve the high-precision vibration control for MLRS. In this paper, the vibration response of a computed torque controlled MLRS is described. The azimuth and elevation mechanisms of the MLRS are driven by permanent magnet synchronous motors and supposed to be rigid. First, the dynamic model of motor-mechanism coupling system is established using Lagrange method and field-oriented control theory. Then, in order to deal with the nonlinearities, a computed torque controller is designed to control the vibration of the MLRS when it is firing a salvo of rockets. Furthermore, to compensate for the lumped uncertainty due to parametric variations and un-modeled dynamics in the design of the computed torque controller, a radial basis function neural network estimator is developed to adapt the uncertainty based on Lyapunov stability theory. Finally, the simulated results demonstrate the effectiveness of the proposed control system and show that the proposed controller is robust with regard to the uncertainty.