دانلود مقاله ISI انگلیسی شماره 152373
ترجمه فارسی عنوان مقاله

یک روش رزونانس تصادفی بی نظم سازگار غیر اشباع و کاربرد آن در تشخیص خطای مکانیکی

عنوان انگلیسی
An adaptive unsaturated bistable stochastic resonance method and its application in mechanical fault diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152373 2017 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 84, Part A, 1 February 2017, Pages 731-746

ترجمه کلمات کلیدی
تشخیص خطا مکانیکی، پردازش سیگنال، رزونانس تصادفی، اشباع خروجی،
کلمات کلیدی انگلیسی
Mechanical fault diagnosis; Signal processing; Stochastic resonance; Output saturation;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش رزونانس تصادفی بی نظم سازگار غیر اشباع و کاربرد آن در تشخیص خطای مکانیکی

چکیده انگلیسی

In mechanical fault diagnosis, most traditional methods for signal processing attempt to suppress or cancel noise imbedded in vibration signals for extracting weak fault characteristics, whereas stochastic resonance (SR), as a potential tool for signal processing, is able to utilize the noise to enhance fault characteristics. The classical bistable SR (CBSR), as one of the most widely used SR methods, however, has the disadvantage of inherent output saturation. The output saturation not only reduces the output signal-to-noise ratio (SNR) but also limits the enhancement capability for fault characteristics. To overcome this shortcoming, a novel method is proposed to extract the fault characteristics, where a piecewise bistable potential model is established. Simulated signals are used to illustrate the effectiveness of the proposed method, and the results show that the method is able to extract weak fault characteristics and has good enhancement performance and anti-noise capability. Finally, the method is applied to fault diagnosis of bearings and planetary gearboxes, respectively. The diagnosis results demonstrate that the proposed method can obtain larger output SNR, higher spectrum peaks at fault characteristic frequencies and therefore larger recognizable degree than the CBSR method.