دانلود مقاله ISI انگلیسی شماره 152378
ترجمه فارسی عنوان مقاله

یک روش رزونانس تصادفی سازگار بر اساس الگوریتم بهینه کننده گرگ خاکستری و کاربرد آن در تشخیص خطای ماشین آلات

عنوان انگلیسی
An adaptive stochastic resonance method based on grey wolf optimizer algorithm and its application to machinery fault diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152378 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : ISA Transactions, Volume 71, Part 2, November 2017, Pages 206-214

ترجمه کلمات کلیدی
رزونانس تصادفی سازگار، الگوریتم بهینه سازی گرگ خاکستری. نسبت سیگنال به نویز، تشخیص سیگنال ضعیف، تشخیص خطا ماشین،
کلمات کلیدی انگلیسی
Adaptive stochastic resonance; Grey wolf optimizer algorithm; Signal-to-noise ratio; Weak signal detection; Machinery fault diagnosis;
پیش نمایش مقاله
پیش نمایش مقاله  یک روش رزونانس تصادفی سازگار بر اساس الگوریتم بهینه کننده گرگ خاکستری و کاربرد آن در تشخیص خطای ماشین آلات

چکیده انگلیسی

Stochastic resonance (SR) is widely used as an enhanced signal detection method in machinery fault diagnosis. However, the system parameters have significant effects on the output results, which makes it difficult for SR method to achieve satisfactory analysis results. To solve this problem and improve the performance of SR method, this paper proposes an adaptive SR method based on grey wolf optimizer (GWO) algorithm for machinery fault diagnosis. Firstly, the SR system parameters are optimized by the GWO algorithm using a redefined signal-to-noise ratio (SNR) as optimization objective function. Then, the optimal SR output matching the input signal can be adaptively obtained using the optimized parameters. The proposed method is validated on a simulated signal detection and a rolling element bearing test bench, and then applied to the gear fault diagnosis of electric locomotive. Compared with the conventional fixed-parameter SR method, the adaptive SR method based on genetic algorithm (GA-SR) as well as the well-known fast kurtogram method, the proposed method can achieve a greater accuracy. The results indicated that the proposed method has great practical values in engineering.