دانلود مقاله ISI انگلیسی شماره 152501
ترجمه فارسی عنوان مقاله

تشخیص سیگنال تأثیر در تشخیص خطا مکانیکی در نویز ناهنجار و ناگهانی گاوسی

عنوان انگلیسی
Detecting impact signal in mechanical fault diagnosis under chaotic and Gaussian background noise
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152501 2018 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volume 99, 15 January 2018, Pages 702-710

ترجمه کلمات کلیدی
تشخیص گسل، تشخیص سیگنال، سیگنال دوره ای ضعیف، بی نظم،
کلمات کلیدی انگلیسی
Fault diagnosis; Signal detection; Weak periodic signal; Chaotic;
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص سیگنال تأثیر در تشخیص خطا مکانیکی در نویز ناهنجار و ناگهانی گاوسی

چکیده انگلیسی

In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. Traditional methods, such like stochastic resonance (SR), which using noise to enhance weak signals instead of suppressing noise, failed in chaotic background. Neural network, which use reference sequence to estimate and reconstruct the background noise, failed in white Gaussian noise. To solve these problems, a novel weak signal detection method aimed at the problem of detecting impact signal buried under heavy chaotic and Gaussian background noise is proposed. First, the proposed method obtains the virtual reference sequence by constructing the Hankel data matrix. Then an M-order optimal FIR filter is designed, which can minimize the output power of background noise and pass the weak periodic signal undistorted. Finally, detection and reconstruction of the weak periodic signal are achieved from the output SBNR (signal to background noise ratio). The simulation shows, compared with the stochastic resonance (SR) method, the proposed method can detect the weak periodic signal in chaotic noise background while stochastic resonance (SR) method cannot. Compared with the neural network method, (a) the proposed method does not need a reference sequence while neural network method needs one; (b) the proposed method can detect the weak periodic signal in white Gaussian noise background while the neural network method fails, in chaotic noise background, the proposed method can detect the weak periodic signal under a lower SBNR (about 8–17 dB lower) than the neural network method; (c) the proposed method can reconstruct the weak periodic signal precisely.