دانلود مقاله ISI انگلیسی شماره 152685
ترجمه فارسی عنوان مقاله

تقسیم بندی تصاویر سند تخریب شده بر اساس شبکه سلسله مراتبی تحت نظارت

عنوان انگلیسی
Binarization of degraded document images based on hierarchical deep supervised network
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152685 2018 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 74, February 2018, Pages 568-586

ترجمه کلمات کلیدی
تصویربرداری سند تصویری، شبکه عصبی متقاطع، تجزیه و تحلیل سند،
کلمات کلیدی انگلیسی
Document image binarization; Convolutional neural network; Document analysis;
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی تصاویر سند تخریب شده بر اساس شبکه سلسله مراتبی تحت نظارت

چکیده انگلیسی

The binarization of degraded document images is a challenging problem in terms of document analysis. Binarization is a classification process in which intra-image pixels are assigned to either of the two following classes: foreground text and background. Most of the algorithms are constructed on low-level features in an unsupervised manner, and the consequent disenabling of full utilization of input-domain knowledge considerably limits distinguishing of background noises from the foreground. In this paper, a novel supervised-binarization method is proposed, in which a hierarchical deep supervised network (DSN) architecture is learned for the prediction of the text pixels at different feature levels. With higher-level features, the network can differentiate text pixels from background noises, whereby severe degradations that occur in document images can be managed. Alternatively, foreground maps that are predicted at lower-level features present a higher visual quality at the boundary area. Compared with those of traditional algorithms, binary images generated by our architecture have cleaner background and better-preserved strokes. The proposed approach achieves state-of-the-art results over widely used DIBCO datasets, revealing the robustness of the presented method.