دانلود مقاله ISI انگلیسی شماره 152710
ترجمه فارسی عنوان مقاله

یک معماری جدید همراه با پارامترهای بهینه برای شبکه های عصبی انتشار عقب که برای تشخیص نفوذ شبکه غیرمعمول استفاده می شود

عنوان انگلیسی
A novel architecture combined with optimal parameters for back propagation neural networks applied to anomaly network intrusion detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152710 2018 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Security, Volume 75, June 2018, Pages 36-58

پیش نمایش مقاله
پیش نمایش مقاله  یک معماری جدید همراه با پارامترهای بهینه برای شبکه های عصبی انتشار عقب که برای تشخیص نفوذ شبکه غیرمعمول استفاده می شود

چکیده انگلیسی

Today, as attacks against computer networks are evolving rapidly, Network Intrusion Detection System (NIDS) has become a valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threaten confidentiality, integrity and availability of network resources and services. In this paper, we have proposed an optimal approach to build an effective anomaly NIDS based on Back Propagation Neural Network (BPNN) using Back Propagation Learning Algorithm, and employed a novel architecture for that network. Our approach consists firstly of generation of all possible combinations of most relevant values of the parameters included in construction of such classifier, or influencing its performance in anomaly detection, like feature selection, data normalization, architecture of neural network and activation function. Secondly, we have built 48 IDSs corresponding to those combinations. Finally, after considering all performance measurements like detection rate, false positive rate, F-score, AUC (ability to avoid false classification) etc., we have selected the two best IDSs. Experimental results on KDD CUP ‘99 dataset indicate that our two best IDSs use the novel architecture, and that compared to several traditional and new techniques, our proposed approach achieves higher detection rate and lower false positive rate.