دانلود مقاله ISI انگلیسی شماره 152760
ترجمه فارسی عنوان مقاله

پیش بینی تک پیکسل بر اساس شبکه عصبی عمیق برای کدگذاری ویدئویی متحد

عنوان انگلیسی
Deep neural network based single pixel prediction for unified video coding
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152760 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 272, 10 January 2018, Pages 558-570

ترجمه کلمات کلیدی
شبکه عصبی عمیق پیش بینی ویدیو، برنامه نویسی یکپارچه، کدگذاری درون فریم، کدگذاری بین فریم، کد گذاری چندین نمایش،
کلمات کلیدی انگلیسی
Deep neural network; Video prediction; Unified video coding; Intra-frame coding; Inter-frame coding; Multi-view coding;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی تک پیکسل بر اساس شبکه عصبی عمیق برای کدگذاری ویدئویی متحد

چکیده انگلیسی

Classical video prediction methods exploit directly and shallowly the intra-frame, inter-frame and multi-view similarities within the video sequences; the proposed video prediction methods indirectly and intensively transform the frame correlations into nonlinear mappings by using a general deep neural network (DNN) with single output node. Traditional DNN based video prediction algorithms wholly and coarsely forecast the next frame, but the proposed video prediction algorithms severally and precisely anticipate single pixel of future frame in order to achieve high prediction accuracy and low computation cost. First of all, general DNN based prediction algorithms for intra-frame coding, inter-frame coding and multi-view coding are presented respectively. Then, general DNN based prediction algorithm for unified video coding is raised, which relies on the preceding three prediction algorithms. It is evaluated by simulation experiments that the proposed methods hold better performance than state of the art High Efficiency Video Coding (HEVC) in peak signal to noise ratio (PSNR) and bit per pixel (BPP) in the situation of low bitrate transmission. It is also verified by experimental results that the proposed general DNN architecture possesses higher prediction accuracy and lower computation load than those of conventional DNN architectures. It is further testified by experimental results that the proposed methods are very suitable for multi-view videos with small correlations and big disparities.