دانلود مقاله ISI انگلیسی شماره 152965
ترجمه فارسی عنوان مقاله

استنتاج آماری درخواست احتمالی مبدا و مقصد احتمالی با استفاده از داده های ترافیکی روزانه

عنوان انگلیسی
Statistical inference of probabilistic origin-destination demand using day-to-day traffic data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
152965 2018 30 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 88, March 2018, Pages 227-256

ترجمه کلمات کلیدی
برآورد تقاضای مبدا و مقصد احتمالی، تخصیص ترافیک آماری، توزیع احتمال، تجزیه واریانس، داده های رانده شده،
کلمات کلیدی انگلیسی
Probabilistic origin-destination demand estimation; Statistical traffic assignment; Probability distribution; Variance decomposition; Data driven;
پیش نمایش مقاله
پیش نمایش مقاله  استنتاج آماری درخواست احتمالی مبدا و مقصد احتمالی با استفاده از داده های ترافیکی روزانه

چکیده انگلیسی

Recent transportation network studies on uncertainty and reliability call for modeling the probabilistic O-D demand and probabilistic network flow. Making the best use of day-to-day traffic data collected over many years, this paper develops a novel theoretical framework for estimating the mean and variance/covariance matrix of O-D demand considering the day-to-day variation induced by travelers’ independent route choices. It also estimates the probability distributions of link/path flow and their travel cost where the variance stems from three sources, O-D demand, route choice and unknown errors. The framework estimates O-D demand mean and variance/covariance matrix iteratively, also known as iterative generalized least squares (IGLS) in statistics. Lasso regularization is employed to obtain sparse covariance matrix for better interpretation and computational efficiency. Though the probabilistic O-D estimation (ODE) works with a much larger solution space than the deterministic ODE, we show that its estimator for O-D demand mean is no worse than the best possible estimator by an error that reduces with the increase in sample size. The probabilistic ODE is examined on two small networks and two real-world large-scale networks. The solution converges quickly under the IGLS framework. In all those experiments, the results of the probabilistic ODE are compelling, satisfactory and computationally plausible. Lasso regularization on the covariance matrix estimation leans to underestimate most of variance/covariance entries. A proper Lasso penalty ensures a good trade-off between bias and variance of the estimation.