دانلود مقاله ISI انگلیسی شماره 156849
ترجمه فارسی عنوان مقاله

فرآیندهای گاوس عمیق مجدد برای شناسایی سیستم بی نظیر

عنوان انگلیسی
Deep recurrent Gaussian processes for outlier-robust system identification
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
156849 2017 13 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 11086 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 18 روز بعد از پرداخت 997,740 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 9 روز بعد از پرداخت 1,995,480 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Process Control, Volume 60, December 2017, Pages 82-94

پیش نمایش مقاله
پیش نمایش مقاله  فرآیندهای گاوس عمیق مجدد برای شناسایی سیستم بی نظیر

چکیده انگلیسی

Gaussian Processes (GP) comprise a powerful kernel-based machine learning paradigm which has recently attracted the attention of the nonlinear system identification community, specially due to its inherent Bayesian-style treatment of the uncertainty. However, since standard GP models assume a Gaussian distribution for the observation noise, i.e., a Gaussian likelihood, the learning and predictive capabilities of such models can be severely degraded when outliers are present in the data. In this paper, motivated by our previous work on GP learning with data containing outliers and recent advances in hierarchical (deep GPs) and recurrent GP (RGP) approaches, we introduce an outlier-robust recurrent GP model, the RGP-t. Our approach explicitly models the observation layer, which includes a heavy-tailed Student-t likelihood, and allows for a hierarchy of multiple transition layers to learn the system dynamics directly from estimation data contaminated by outliers. In addition, we modify the original variational framework of standard RGP in order to perform inference with the new RGP-t model. The proposed approach is comprehensively evaluated using six artificial benchmarks, within several outlier contamination levels, and two datasets related to process industry systems (pH neutralization and heat exchanger), whose estimation data undergo large contamination rates. The simulation results obtained by the RGP-t model indicates an impressive resilience to outliers and a superior capability to learn nonlinear dynamics directly from highly outlier-contaminated data in comparison to existing GP models.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 11086 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 18 روز بعد از پرداخت 997,740 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 9 روز بعد از پرداخت 1,995,480 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.