دانلود مقاله ISI انگلیسی شماره 157890
ترجمه فارسی عنوان مقاله

رفتار انرژی هسته ای و رفتار و تصمیم گیری با استفاده از یادگیری ماشین

عنوان انگلیسی
Nuclear energy system’s behavior and decision making using machine learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
157890 2017 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Nuclear Engineering and Design, Volume 324, 1 December 2017, Pages 27-34

ترجمه کلمات کلیدی
بهینه سازی تصمیم گیری، سیستم های انرژی هسته ای، فراگیری ماشین، راکتورهای کوچک مدولار،
کلمات کلیدی انگلیسی
Decision-making optimization; Nuclear energy systems; Machine learning; Small modular reactors;
پیش نمایش مقاله
پیش نمایش مقاله  رفتار انرژی هسته ای و رفتار و تصمیم گیری با استفاده از یادگیری ماشین

چکیده انگلیسی

Early versions of artificial neural networks’ ability to learn from data based on multivariable statistics and optimization demanded high computational performance as multiple training iterations are necessary to find an optimal local minimum. The rapid advancements in computational performance, storage capacity, and big data management have allowed machine-learning techniques to improve in the areas of learning speed, non-linear data handling, and complex features identification. Machine-learning techniques have proven successful and been used in the areas of autonomous machines, speech recognition, and natural language processing. Though the application of artificial intelligence in the nuclear engineering domain has been limited, it has accurately predicted desired outcomes in some instances and has proven to be a worthwhile area of research. The objectives of this study are to create neural networks topologies to use Oregon State University’s Multi-Application Small Light Water Reactor integrated test facility’s data and evaluate its capability of predicting the systems behavior during various core power inputs and a loss of flow accident. This study uses data from multiple sensors, focusing primarily on the reactor pressure vessel and its internal components. As a result, the artificial neural networks are able to predict the behavior of the system with good accuracy in each scenario. Its ability to provide technical data can help decision makers to take actions more rapidly, identify safety issues, or provide an intelligent system with the potential of using pattern recognition for reactor accident identification and classification. Overall, the development and application of neural networks can be promising in the nuclear industry and any product processes that can benefit from utilizing a quick data analysis tool.