دانلود مقاله ISI انگلیسی شماره 160652
ترجمه فارسی عنوان مقاله

تحویل ژن ضد سرطان قابل برنامه ریزی نور با قرنیه قرمز در همکاری با درمان فوتودینامیک

عنوان انگلیسی
Far-red light-mediated programmable anti-cancer gene delivery in cooperation with photodynamic therapy
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
160652 2018 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Biomaterials, Available online 12 April 2018

پیش نمایش مقاله
پیش نمایش مقاله  تحویل ژن ضد سرطان قابل برنامه ریزی نور با قرنیه قرمز در همکاری با درمان فوتودینامیک

چکیده انگلیسی

Effective anti-cancer therapy is hurdled by the complicated extracellular and intracellular barriers, and thus a smart gene vector that can enable programmable gene delivery is highly demanded. Photo-manipulation of gene delivery processes features spatial and temporal precision, while majority of current strategies utilizes short-wavelength UV/visible light with poor tissue penetration or high-power-density near-infrared (NIR) light that would cause undesired heat damage. Herein, a ROS-degradable polycation was designed and co-delivered with a photosensitizer (PS), thus realizing photo-programmable gene delivery using far-red light (661 nm) at low optical power density (down to 5 mW cm−2). Thioketal-crosslinked polyethyleneimine (TK-PEI) was synthesized to condense p53 gene to form nanocomplexes (NCs), and hyaluronic acid (HA) modified with pheophytin a (Pha) was coated onto NCs to enhance their colloidal stability and enable cancer cell targeting. Short-time (8-min) light irradiation produced non-lethal amount of ROS to disrupt the endosomal membranes and facilitate p53 gene release via degradation of TK-PEI, which collectively enhanced p53 expression levels toward anti-cancer gene therapy. Long-time (30-min) light irradiation at the post-transfection state generated lethal amount of ROS, which cooperatively killed cancer cells to strengthen p53 gene therapy. To the best of our knowledge, this study represents the first example of a “one stone, three birds” approach to realize cooperative anti-cancer gene therapy using low-power-density, long-wavelength visible light as a single stimulus.