دانلود مقاله ISI انگلیسی شماره 46226
ترجمه فارسی عنوان مقاله

الگوریتم کلونی زنبور عسل برای مشکلات بهینه سازی گسسته با استفاده از انتخاب ویژگی

عنوان انگلیسی
Weighted bee colony algorithm for discrete optimization problems with application to feature selection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
46226 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 44, September 2015, Pages 153–167

ترجمه کلمات کلیدی
بهینه سازی کلنی زنبور عسل، بهینه سازی طبقه بندی طبقه بندی، انتخاب ویژگی، بهینه سازی کلنی زنبور عسل
کلمات کلیدی انگلیسی
Bee colony optimization; Categorical optimization; Classification; Feature selection; Weighted bee colony optimization

چکیده انگلیسی

The conventional bee colony optimization (BCO) algorithm, one of the recent swarm intelligence (SI) methods, is good at exploration whilst being weak at exploitation. In order to improve the exploitation power of BCO, in this paper we introduce a novel algorithm, dubbed as weighted BCO (wBCO), that allows the bees to search in the solution space deliberately while considering policies to share the attained information about the food sources heuristically. For this purpose, wBCO considers global and local weights for each food source, where the former is the rate of popularity of a given food source in the swarm and the latter is the relevancy of a food source to a category label. To preserve diversity in the population, we embedded new policies in the recruiter selection stage to ensure that uncommitted bees follow the most similar committed ones. Thus, the local food source weighting and recruiter selection strategies make the algorithm suitable for discrete optimization problems. To demonstrate the utility of wBCO, the feature selection (FS) problem is modeled as a discrete optimization task, and has been tackled by the proposed algorithm. The performance of wBCO and its effectiveness in dealing with feature selection problem are empirically evaluated on several standard benchmark optimization functions and datasets and compared to the state-of-the-art methods, exhibiting the superiority of wBCO over the competitor approaches.