دانلود مقاله ISI انگلیسی شماره 55094
ترجمه فارسی عنوان مقاله

مدل سازی 3D جامع از یک سلول سوختی اکسید جامد مسطح واحد

عنوان انگلیسی
A comprehensive 3-D modeling of a single planar solid oxide fuel cell
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55094 2016 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Hydrogen Energy, Volume 41, Issue 5, 9 February 2016, Pages 3613–3627

ترجمه کلمات کلیدی
راندمان تبدیل - مصرف سوخت؛ سلول سوختی اکسید جامد ؛ شیب دما؛ مدل سازی سه بعدی
کلمات کلیدی انگلیسی
Conversion efficiency; Fuel utilization; Internal methane steam reforming; Solid oxide fuel cell (SOFC); Temperature gradients; Three-dimensional (3-D) modeling
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی 3D جامع از یک سلول سوختی اکسید جامد مسطح واحد

چکیده انگلیسی

The main motivation of the presented paper is to study the amplitude and location of the maximum temperature (Tmax) and maximum temperature gradient (ΔT/Δxmax), respectively, as well as the performance parameters of the modeled, single, planar, anode-supported, solid oxide fuel cell (SOFC) with internal methane steam reforming at different operating conditions (i.e. current density and inlet velocity of fuel gas). The reforming reaction and locally increased current density lead to inhomogeneous heat generation within the SOFC that results in inhomogeneous distribution of temperature. Due to the latter, a comprehensive, three-dimensional, thermo-fluid model of the SOFC has been developed and implemented in software package COMSOL Multiphysics® 4.3. The simulation results show that the amplitude and location of the Tmax and ΔT/Δxmax within the modeled SOFC depend on operating conditions. The data about their values can be efficiently used instead of temperature measurements with expensive embedded thermocouples when a realistic, operating SOFC is controlled. The results also show that the current density and the inlet velocity of fuel gas are the key parameters to improve the fuel utilization and the total conversion efficiency.