دانلود مقاله ISI انگلیسی شماره 55153
ترجمه فارسی عنوان مقاله

جفت شدگی حرارتی سلول سوختی PEM و هیدرید فلزی ذخیره سازی هیدروژن با استفاده از لوله های انتقال حرارت

عنوان انگلیسی
Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55153 2016 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Hydrogen Energy, Volume 41, Issue 7, 23 February 2016, Pages 4264–4277

ترجمه کلمات کلیدی
سلول سوختی PEM؛ ذخیره سازی هیدرید هیدروژن فلزی ، لوله های حرارتی - خنک کننده غیر فعال؛ مدیریت حرارتی
کلمات کلیدی انگلیسی
PEM fuel cell; Metal hydride hydrogen storage; Heat pipes; Passive cooling; Thermal management
پیش نمایش مقاله
پیش نمایش مقاله  جفت شدگی حرارتی سلول سوختی PEM و هیدرید فلزی ذخیره سازی هیدروژن با استفاده از لوله های انتقال حرارت

چکیده انگلیسی

This paper presents a mathematical model to study opportunities for simultaneous passive thermal management of an integrated PEM fuel cell and metal hydrogen (MH) storage system by thermal bridging of these two components, using heat pipes. The thermal coupling arrangement is expected to be promising, because, as more power is drawn from the PEMFC, more heat is generated that can be used to enhance the rate of release of hydrogen from the MH storage. Heat pipes can provide an effective passive thermal bridge for this purpose on account of their high thermal conductivity, and thus avoid parasitic energy penalties associated with active methods of cooling. The main components modelled analytically in MATLAB in this study are the PEMFC, heat pipes, and MH hydrogen storage. This simulation has been used to size the heat pipe system needed for thermal coupling of a 500 W PEMFC and MH storage canisters. The performance improvement of the MH system after receiving the fuel cell heat, and the cooling capacity of the MH system to be used as heat sink for thermal management of the fuel cell stack, has been studied. The MH canisters used to supply hydrogen to this stack each had the maximum supply capability of 2.5 slpm at 25 °C, while the fuel cell demand was 7.2 slpm at its rated power (500 W). The results show that just under 20% of the total cooling load of the stack (i.e. ∼880 W) at its maximum power point is demanded by the MH canisters (∼170 W) to achieve the required hydrogen discharge rate of 7.2 slpm at 35 °C provided the MH canisters are thermally well insulated.