دانلود مقاله ISI انگلیسی شماره 55405
ترجمه فارسی عنوان مقاله

کنترل بار فرکانس مرتبه اعشاری سیستم های قدرت به هم پیوسته با استفاده از بهینه سازی چندهدفه آشفته

عنوان انگلیسی
Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55405 2015 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 29, April 2015, Pages 328–344

ترجمه کلمات کلیدی
کنترل بار فرکانس دو منطقه ای (LFC)؛ کنترل سیستم قدرت - کنترل کننده PID مرتبه اعشاری ؛ آشفته NSGA-II
کلمات کلیدی انگلیسی
Two-area load-frequency control (LFC); Power system control; Fractional-order PID controller; Control trade-off design; Chaotic NSGA-II
پیش نمایش مقاله
پیش نمایش مقاله  کنترل بار فرکانس مرتبه اعشاری سیستم های قدرت به هم پیوسته با استفاده از بهینه سازی چندهدفه آشفته

چکیده انگلیسی

Fractional-order proportional-integral-derivative (FOPID) controllers are designed for load-frequency control (LFC) of two interconnected power systems. Conflicting time-domain design objectives are considered in a multi-objective optimization (MOO)-based design framework to design the gains and the fractional differ-integral orders of the FOPID controllers in the two areas. Here, we explore the effect of augmenting two different chaotic maps along with the uniform random number generator (RNG) in the popular MOO algorithm—the Non-dominated Sorting Genetic Algorithm-II (NSGA-II). Different measures of quality for MOO, e.g. hypervolume indicator, moment of inertia-based diversity metric, total Pareto spread, spacing metric, are adopted to select the best set of controller parameters from multiple runs of all the NSGA-II variants (i.e. nominal and chaotic versions). The chaotic versions of the NSGA-II algorithm are compared with the standard NSGA-II in terms of solution quality and computational time. In addition, the Pareto optimal fronts showing the trade-off between the two conflicting time domain design objectives are compared to show the advantage of using the FOPID controller over that with simple PID controller. The nature of fast/slow and high/low noise amplification effects of the FOPID structure or the four quadrant operation in the two inter-connected areas of the power system is also explored. A fuzzy logic-based method has been adopted next to select the best compromise solution from the best Pareto fronts corresponding to each MOO comparison criteria. The time-domain system responses are shown for the fuzzy best compromise solutions under nominal operating conditions. Comparative analysis on the merits and de-merits of each controller structure is reported then. A robustness analysis is also done for the PID and the FOPID controllers.