دانلود مقاله ISI انگلیسی شماره 55430
ترجمه فارسی عنوان مقاله

کنترل فرکانس بار از سیستم قدرتمند متصل با استفاده از بهینه سازی گرگ خاکستری

عنوان انگلیسی
Load frequency control of interconnected power system using grey wolf optimization
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55430 2016 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Swarm and Evolutionary Computation, Volume 27, April 2016, Pages 97–115

ترجمه کلمات کلیدی
کنترل فرکانس بار، محدودیت سرعت تولید، بهینه سازی گرگ خاکستری، تجزیه و تحلیل میزان حساسیت، تجزیه و تحلیل گذرا
کلمات کلیدی انگلیسی
Load frequency control; Generation rate constraint; Grey wolf optimization; Sensitivity analysis; Transient analysis

چکیده انگلیسی

In this article an attempt has been made to solve load frequency control (LFC) problem in an interconnected power system network equipped with classical PI/PID controller using grey wolf optimization (GWO) technique. Initially, proposed algorithm is used for two-area interconnected non-reheat thermal-thermal power system and then the study is extended to three other realistic power systems, viz. (i) two-area multi-units hydro-thermal, (ii) two-area multi-sources power system having thermal, hydro and gas power plants and (iii) three-unequal-area all thermal power system for better validation of the effectiveness of proposed algorithm. The generation rate constraint (GRC) of the steam turbine is included in the system modeling and dynamic stability of aforesaid systems is investigated in the presence of GRC. The controller gains are optimized by using GWO algorithm employing integral time multiplied absolute error (ITAE) based fitness function. Performance of the proposed GWO algorithm has been compared with comprehensive learning particle swarm optimization (CLPSO), ensemble of mutation and crossover strategies and parameters in differential evolution (EPSDE) and other similar meta-heuristic optimization techniques available in literature for similar test system. Moreover, to demonstrate the robustness of proposed GWO algorithm, sensitivity analysis is performed by varying the operating loading conditions and system parameters in the range of ±50%±50%. Simulation results show that GWO has better tuning capability than CLPSO, EPSDE and other similar population-based optimization techniques.