دانلود مقاله ISI انگلیسی شماره 55476
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل عملکرد مقایسه ای بهینه سازی مبتنی بر آموزش و یادگیری برای کنترل اتوماتیک فرکانس بار سیستم های قدرت چندمنبعی

عنوان انگلیسی
Comparative performance analysis of teaching learning based optimization for automatic load frequency control of multi-source power systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
55476 2015 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 66, March 2015, Pages 67–77

ترجمه کلمات کلیدی
کنترل اتوماتیک فرکانس بار ؛ کنترل تولید خودکار؛ عملکرد پویا؛ سیستم قدرت چندمنبعی - ارتباط HVDC؛ بهینه سازی بر اساس یادگیری و آموزش
کلمات کلیدی انگلیسی
Automatic load frequency control; Automatic generation control; Dynamic performance; Multi source power system; HVDC link; Teaching learning based optimization
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل عملکرد مقایسه ای بهینه سازی مبتنی بر  آموزش و یادگیری برای کنترل اتوماتیک فرکانس بار سیستم های قدرت چندمنبعی

چکیده انگلیسی

This paper presents a new population based parameter free optimization algorithm as teaching learning based optimization (TLBO) and its application to automatic load frequency control (ALFC) of multi-source power system having thermal, hydro and gas power plants. The proposed method is based on the effect of the influence of teacher on the output of learners and the learners can enhance their knowledge by interactions among themselves in a class. In this extensive study, the algorithm is applied in multi area and multi-source realistic power system without and with DC link between two areas in order to tune the PID controller which is used for automatic generation control (AGC). The potential and effectiveness of the proposed algorithm is compared with that of differential evolution algorithm (DE) and optimal output feedback controller tuning performance for the same power systems. The dynamic performance of proposed controller is investigated by different cost functions like integral of absolute error (IAE), integral of squared error (ISE), integral of time weighted squared error (ITSE) and integral of time multiplied absolute error (ITAE) and the robustness of the optimized controller is verified by its response toward changing in load and system parameters. It is found that the dynamic performance of the proposed controller is better than that of recently published DE optimized controller and optimal output feedback controller and also the proposed system is more robust and stable to wide changes in system loading, parameters, size and locations of step load perturbation and different cost functions.