دانلود مقاله ISI انگلیسی شماره 58269
ترجمه فارسی عنوان مقاله

تشخیص اضافه بار در سنگ شکن نیمه اتوماتیک: رویکرد نظارت فرایند غیر خطی

عنوان انگلیسی
Overload Detection in Semi-Autogenous Grinding: A Nonlinear Process Monitoring Approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
58269 2015 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : IFAC-PapersOnLine, Volume 48, Issue 8, 2015, Pages 960–965

ترجمه کلمات کلیدی
کنترل فرایند، تحلیل آماری، نظارت بر فرایند، غیر خطی، غیر پارامتریک
کلمات کلیدی انگلیسی
process control; statistical analysis; process monitoring; nonlinearity; non-parametric

چکیده انگلیسی

Detecting the onset of overloading in a semi-autogenous grinding (SAG) mill is a challenging task for operators to perform due to the complex and nonlinear nature of an overload. To detect an overload, operators must simultaneously monitor the correlations between several measurements of the SAG process. However, overloading often goes unnoticed at its early stages because the subtle changes in the correlations between measurements are difficult for an operator to observe. In addition, linear process monitoring techniques such as principal component analysis (PCA) provide inconsistent results with overload detection because of the process nonlinearity. Recently, locally linear embedding (LLE) with a linear classifier has been proposed to detect the early onset of an overload in a SAG mill. In this paper, we compare the suitability of LLE to detect the early onset of an overload against kernel PCA and support vector machines.