دانلود مقاله ISI انگلیسی شماره 65297
ترجمه فارسی عنوان مقاله

تشخیص سیگنال ضعیف چندفرکانسی بر اساس تبدیل موجک و رزونانس تصادفی چندپایدار جبران پارامتر میان گذر

عنوان انگلیسی
Multi-frequency weak signal detection based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
65297 2016 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Mechanical Systems and Signal Processing, Volumes 70–71, March 2016, Pages 995–1010

ترجمه کلمات کلیدی
تشخیص سیگنال ضعیف؛ تبدیل موجک؛ رزونانس تصادفی چندپایدار - جبران پارامتر؛ چندفرکانسی
کلمات کلیدی انگلیسی
Weak signal detection; Wavelet transform; Multi-stable stochastic resonance; Parameter compensation; Multi-frequency
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص سیگنال ضعیف چندفرکانسی بر اساس تبدیل موجک و رزونانس تصادفی چندپایدار جبران پارامتر میان گذر

چکیده انگلیسی

In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. A novel weak signal detection method aimed at the problem of detecting multi-frequency signals buried under heavy background noise is proposed based on wavelet transform and parameter compensation band-pass multi-stable stochastic resonance (SR). First, the noisy signal is processed by parameter compensation, with the noise and system parameters expanded 10 times to counteract the effect of the damping term. The processed signal is decomposed into multiple signals of different scale frequencies by wavelet transform. Following this, we adjust the size of the scaled signals' amplitudes and reconstruct the signals; the weak signal frequency components are then enhanced by multi-stable stochastic resonance. The enhanced components of the signal are processed through a band-pass filter, leaving the enhanced sections of the signal. The processed signal is analyzed by FFT to achieve detection of the multi-frequency weak signals. The simulation and experimental results show that the proposed method can enhance the signal amplitude, can effectively detect multi-frequency weak signals buried under heavy noise and is valuable and usable for bearing fault signal analysis.