دانلود مقاله ISI انگلیسی شماره 65308
ترجمه فارسی عنوان مقاله

روش جدید رزونانس تصادفی امرتبه دوم فزایش یافته نویز تحت کنترل با کاربرد آن در عیب یابی پیشرانه توربین بادی

عنوان انگلیسی
A new noise-controlled second-order enhanced stochastic resonance method with its application in wind turbine drivetrain fault diagnosis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
65308 2013 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Renewable Energy, Volume 60, December 2013, Pages 7–19

ترجمه کلمات کلیدی
توربین های بادی؛ تشخیص خطا؛ رزونانس تصادفی مرتبه دوم ؛ تبدیل موجک مورلت ؛ نویز چندمقیاسی
کلمات کلیدی انگلیسی
Wind turbines; Fault diagnosis; Second-order stochastic resonance; Morlet wavelet transform; Multiscale noise
پیش نمایش مقاله
پیش نمایش مقاله  روش جدید رزونانس تصادفی امرتبه دوم فزایش یافته نویز تحت کنترل با کاربرد آن در عیب یابی پیشرانه توربین بادی

چکیده انگلیسی

Condition monitoring of a wind turbine is important to extend the wind turbine system's reliability and useful life. However, in many cases, to extract feature components becomes challenging and the applicability of information drops down due to the large amount of noise. Stochastic resonance (SR), used as a method of utilising noise to amplify weak signals in nonlinear systems, can detect weak signals overwhelmed in the noise. Therefore, a new noise-controlled second-order enhanced SR method based on the Morlet wavelet transform is proposed to extract fault feature for wind turbine vibration signals in the present study. The second-order SR method can obtain better denoising effect and higher signal-to-noise ratio (SNR) of resonance output by means of twice integral transform compared with the traditional SR method. Morlet wavelet transform can obtain finer frequency partitions and overcome the frequency aliasing compared with the classical wavelet transform. Therefore, through Morlet wavelet transform, the noise intensity of different scales can be adjusted to realize the resonance detection of weak periodic signal whatever it is a low-frequency signal or high-frequency signal. Thus the method is well-suited for enhancement of weak fault identification, whose effectiveness has been verified by the practical vibration signals carrying fault information. Finally, the proposed method has been applied to extract feature of the looseness fault of shaft coupling of wind turbine successfully.