دانلود مقاله ISI انگلیسی شماره 65328
ترجمه فارسی عنوان مقاله

تقسیم بندی آسیب شناختی کبد با استفاده از رزونانس تصادفی و ماشین های سلولی

عنوان انگلیسی
Pathological liver segmentation using stochastic resonance and cellular automata ☆
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
65328 2016 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Visual Communication and Image Representation, Volume 34, January 2016, Pages 89–102

ترجمه کلمات کلیدی
CT؛ تقسیم بندی تصویر؛ ماشین های سلولی پویا - رزونانس تصادفی؛ برش نمودار؛ کبد؛ افزایش کنتراست ؛ تبدیل گسسته گابور
کلمات کلیدی انگلیسی
CT; Image segmentation; Dynamic cellular automata; Stochastic resonance; Graph cut; Liver; Contrast enhancement; Discrete Gabor transform
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی آسیب شناختی کبد با استفاده از رزونانس تصادفی و ماشین های سلولی

چکیده انگلیسی

Liver segmentation continues to remain a major challenge, largely due to its intensity complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography data. In this paper, we present an approach to reconstructing the liver surface in low contrast computed tomography. The main contributions are: (1) a stochastic resonance based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulted by cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and MICCAI Grand Challenge workshop. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.