دانلود مقاله ISI انگلیسی شماره 68103
ترجمه فارسی عنوان مقاله

روش شبیه سازی ساختمان برای آموزش ابزار تحلیل داده های خودکار در مدیریت انرژی ساختمان

عنوان انگلیسی
Building simulation approaches for the training of automated data analysis tools in building energy management
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
68103 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 27, Issue 4, October 2013, Pages 457–465

ترجمه کلمات کلیدی
مدیریت انرژی؛ قرائت خودکار ؛ فراگیری ماشین؛ شبیه سازی عملکرد ساختمان - محک
کلمات کلیدی انگلیسی
Energy management; Automated meter reading; Machine learning; Building Performance simulation; Benchmarking
پیش نمایش مقاله
پیش نمایش مقاله  روش شبیه سازی ساختمان برای آموزش ابزار تحلیل داده های خودکار در مدیریت انرژی ساختمان

چکیده انگلیسی

The field of building energy management, which monitors and analyses the energy use of buildings with the aim to control and reduce energy expenditure, is seeing a rapid evolution. Automated meter reading approaches, harvesting data at hourly or even half-hourly intervals, create a large pool of data which needs analysis. Computer analysis by means of machine learning techniques allows automated processing of this data, invoking expert analysis where anomalies are detected. However, machine learning always requires a historical dataset to train models and develop a benchmark to define what constitutes an anomaly. Computer analysis by means of building performance simulation employs physical principles to predict energy behaviour, and allows the assessment of the behaviour of buildings from a pure modelling background. This paper explores how building simulation approaches can be fused into energy management practice, especially with a view to the production of artificial bespoke benchmarks where historical profiles are not available. A real accommodation block, which is subject to monitoring, is used to gather an estimation of the accuracy of this approach. The findings show that machine learning from simulation models has a high internal accuracy; comparison with actual metering data shows prediction errors in the system (20%) but still achieves a substantial improvement over industry benchmark values.