دانلود مقاله ISI انگلیسی شماره 70652
ترجمه فارسی عنوان مقاله

شرایط حرارتی داخل ساختمان در جزیره گرمایی شهری: مقایسه پیش بینی روش رگرسیون و شبکه عصبی مصنوعی

عنوان انگلیسی
Indoor thermal condition in urban heat island: Comparison of the artificial neural network and regression methods prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
70652 2014 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy and Buildings, Volume 76, June 2014, Pages 597–604

ترجمه کلمات کلیدی
جزیره گرمایی شهری (UHI)؛ موج گرما؛ رگرسیون سری زمانی؛ شبکه های عصبی مصنوعی (ANN)؛ سیستم هشدار حرارتی
کلمات کلیدی انگلیسی
Urban heat island (UHI); Heat wave; Time series regression; Artificial neural network (ANN); Heat alert system

چکیده انگلیسی

A side effect of urbanization, urban heat island (UHI), is well known in increases of ambient air temperature. This increase further leads to a rise in indoor environment temperature, reduction of thermal comfort, increase of cooling demand, and heat related morbidity and mortality especially among vulnerable people such as the elderlies and those living in poorly ventilated buildings. Thus, it is imperative for cities to be empowered with predictive tools during extreme heat waves in order to be able to provide emergency plans. For this purpose, it is utmost importance to develop specialized tools to predict the indoor conditions based on the outdoor conditions recorded at the weather stations. In order to develop a reliable warning system artificial neural network (ANN) and regression method were proposed and tested for an indoor air temperature forecasting application with respect to neighborhood parameters. To find the most practical approach, a cross comparison of the models was conducted by two different levels of simulation in order to present the capturing and prediction performance of the developed models. In general, the ANN model showed better accuracy in predicting the indoor dry-bulb temperature while it was more complicated in implementation.