دانلود مقاله ISI انگلیسی شماره 89002
ترجمه فارسی عنوان مقاله

پیش بینی سبک های یادگیری در سیستم های آموزشی هوشمند مکالمه با استفاده از درخت تصمیم گیری فازی

عنوان انگلیسی
On predicting learning styles in conversational intelligent tutoring systems using fuzzy decision trees
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
89002 2017 42 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Human-Computer Studies, Volume 97, January 2017, Pages 98-115

ترجمه کلمات کلیدی
سیستم های آموزشی هوشمند عوامل مکالمه، معماری سیستم آموزشی آموزشی، درخت تصمیم گیری فازی،
کلمات کلیدی انگلیسی
Intelligent tutoring systems; Conversational agents; Architectures for educational technology system; Fuzzy decision trees;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سبک های یادگیری در سیستم های آموزشی هوشمند مکالمه با استفاده از درخت تصمیم گیری فازی

چکیده انگلیسی

Intelligent Tutoring Systems personalise learning for students with different backgrounds, abilities, behaviours and knowledge. One way to personalise learning is through consideration of individual differences in preferred learning style. OSCAR is the name of a Conversational Intelligent Tutoring System that models a person's learning style using natural language dialogue during tutoring in order to dynamically predict, and personalise, their tutoring session. Prediction of learning style is undertaken by capturing independent behaviour variables during the tutoring conversation with the highest value variable determining the student's learning style. A weakness of this approach is that it does not take into consideration the interactions between behaviour variables and, due to the uncertainty inherently present in modelling learning styles, small differences in behaviour can lead to incorrect predictions. Consequently, the learner is presented with tutoring material not suited to their learning style. This paper proposes a new method that uses fuzzy decision trees to build a series of fuzzy predictive models combining these variables for all dimensions of the Felder Silverman Learning Styles model. Results using live data show the fuzzy models have increased the predictive accuracy of OSCAR-CITS across four learning style dimensions and facilitated the discovery of some interesting relationships amongst behaviour variables.