دانلود مقاله ISI انگلیسی شماره 122696
ترجمه فارسی عنوان مقاله

استحکام استنتاج های آماری با استفاده از مدل های خطی با ماتریس همبستگی متاآنالیز

عنوان انگلیسی
Robustness of statistical inferences using linear models with meta-analytic correlation matrices
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
122696 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Human Resource Management Review, Volume 27, Issue 1, March 2017, Pages 216-236

ترجمه کلمات کلیدی
متاآنالیز، داده های گم شده، تحلیل مسیر، مدل سازی معادلات ساختاری،
کلمات کلیدی انگلیسی
Meta-analysis; Missing data; Path analysis; Structural equation modeling;
پیش نمایش مقاله
پیش نمایش مقاله  استحکام استنتاج های آماری با استفاده از مدل های خطی با ماتریس همبستگی متاآنالیز

چکیده انگلیسی

To examine complex relationships among variables, researchers in human resource management, industrial-organizational psychology, organizational behavior, and related fields have increasingly used meta-analytic procedures to aggregate effect sizes across primary studies to form meta-analytic correlation matrices, which are then subjected to further analyses using linear models (e.g., multiple linear regression). Because missing effect sizes (i.e., correlation coefficients) and different sample sizes across primary studies can occur when constructing meta-analytic correlation matrices, the present study examined the effects of missingness under realistic conditions and various methods for estimating sample size (e.g., minimum sample size, arithmetic mean, harmonic mean, and geometric mean) on the estimated squared multiple correlation coefficient (R2) and the power of the significance test on the overall R2 in linear regression. Simulation results suggest that missing data had a more detrimental effect as the number of primary studies decreased and the number of predictor variables increased. It appears that using second-order sample sizes of at least 10 (i.e., independent effect sizes) can improve both statistical power and estimation of the overall R2 considerably. Results also suggest that although the minimum sample size should not be used to estimate sample size, the other sample size estimates appear to perform similarly.