دانلود مقاله ISI انگلیسی شماره 140266
ترجمه فارسی عنوان مقاله

ارزیابی کارایی قابلیت اطمینان در مورد دانش ناقص در مورد توزیع احتمالی

عنوان انگلیسی
Efficient evaluation of structural reliability under imperfect knowledge about probability distributions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
140266 2018 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Reliability Engineering & System Safety, Volume 175, July 2018, Pages 160-170

ترجمه کلمات کلیدی
قابلیت اطمینان ساختاری عدم قطعیت پارامتر، احتمال شکست احتمالی، شاخص قابلیت اطمینان شرطی، روش برآورد نقطه،
کلمات کلیدی انگلیسی
Structural reliability; Parameter uncertainties; Conditional failure probability; Conditional reliability index; Point-estimate method;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی کارایی قابلیت اطمینان در مورد دانش ناقص در مورد توزیع احتمالی

چکیده انگلیسی

We investigate the evaluation of structural reliability under imperfect knowledge about the probability distributions of random variables, with emphasis on the uncertainties of the distribution parameters. When these uncertainties are considered, the failure probability becomes a random variable that is referred to as the conditional failure probability. For the sake of transparency in communicating risk, it is necessary to determine not only the mean but also the quantile of the conditional failure probability. A novel method is proposed for estimating the quantile of the conditional failure probability by using the probability distribution of the corresponding conditional reliability index, in which a point-estimate method based on bivariate dimension-reduction integration is first suggested to compute the first three moments (i.e., mean, standard deviation and skewness) of the conditional reliability index. The probability distribution of the conditional reliability index is then approximated by a three-parameter square normal distribution. Numerical studies show that the computational efficiency of the proposed method was well above that of Monte Carlo simulations without loss of accuracy, and also show that neglecting parameter uncertainties will lead to the structural reliability being overestimated. The developed methodology provides a complete picture of structural reliability evaluation under imperfect knowledge about probability distributions.